ScienceDaily (Sep. 1, 2011) — An international team of scientists has developed a novel X-ray technique for imaging atomic displacements in materials with unprecedented accuracy. They have applied their technique to determine how a recently discovered class of exotic materials -- multiferroics -- can be simultaneously both magnetically and electrically ordered. Multiferroics are also candidate materials for new classes of electronic devices.
The authors comprise scientists from the European Synchrotron Radiation Facility (ESRF) in Grenoble (France), the University of Oxford and the University College London (both UK). Helen Walker from the ESRF is the main author of the publication.
Everybody is familiar with the idea that magnets are polarized with a north and a south pole, which is understood to arise from the alignment of magnet moments carried by atoms in magnetic materials. Certain other materials, known as ferroelectrics, exhibit a similar effect for electrical polarisation. The exotic "multiferroic" materials combine both magnetic and ferroelectric polarizations, and can exhibit a strong coupling between the two phenomena.
This leads to the strange effect that a magnetic field can electrically polarise the material, and an electric field magnetise it. A class of strong multiferroics was discovered ten years ago and has since led to a new, rapidly growing field of research, also motivated by the promise of their exotic properties for new electronic devices. One example is a new type of electronic memory, in which an electric field writes data into the memory and a magnetic detector is used to read it. This process is faster, and uses less energy than today's hard disk drives.
However, the origin of the electric polarisation in multiferroics remained mostly elusive to date. The team's work unambiguously shows that the polarization in the multiferroic studied proceeds from the relative displacement of charges of different signs, rather than the transfer of charge from one atom to another.
As the displacement involves a high number of electrons, even small distances can lead to significant polarisation. The actual distance of the displacement still came as a surprise: about 20 femtometres, or about 1/100,000th of the distance between the atoms in the material. Measuring such small displacements was actually believed to be impossible.
"I think that everyone involved was surprised, if not staggered, by the result that we can now image the position of atoms with such accuracy. The work is testament to the fantastic facilities available in Grenoble to the UK science community," says Prof. Des McMorrow, Deputy Director of the London Centre for Nanotechnology, leader of the UCL part of the project.
Walker and her colleagues developed a smart new experimental technique exploiting the interference between two competing processes: charge and magnetic scattering of a powerful, polarized X-ray beam. They studied a single crystal of TbMnO3 which shows a strong multiferroic coupling at temperatures below 30K, and were able to measure the displacements of specific atoms within it with an accuracy approaching one femtometre (10-15m). The atoms themselves are spaced apart 100,000 times this distance.
The new interference scattering technique has set a world record for accuracy in absolute measurements of atomic displacements. (It is also the first measurement of magnetostriction in antiferromagnets.) Most significantly the identification of the origin of ferroelectricty in a multiferroic material is a major step forward in the design of multiferroics for practical applications.
"By revealing the driving mechanism behind multiferroics, which offer so many potential applications, it underlines how experiments designed to understand the fundamental physics of materials can have an impact on the wider world," concludes Dr. Helen Walker who led the work at the ESRF.